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Abstract: In the present report, a review of discrete calculus on directed graphs is pre-
sented. It is found that the binary tree is a special directed graph that contains both
the exterior calculus and stochastic calculus as different continuum limits are taken. In
the latter case, we arrive at something that may be referred to as “discrete stochastic
calculus.” The resulting discrete stochastic calculus may be applied to any stochastic fi-
nancial model and is guaranteed to produce results that converge in the continuum limit.
Discrete stochastic calculus is applied to the Black-Scholes model for an illustration. The
resulting algorithm generated by discrete stochastic calculus agrees with that of the Cox-
Ross-Rubinstein model, as it should. The results presented here are preliminary and are
intended to encourage others to learn discrete stochastic calculus and apply it to more
complicated financial models.
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1. A Brief Mathematical Review

In the present paper, we will be concerned with quantities that can be integrated over
p-dimensional domains. Although the material we discuss generalizes for any p, we will
restrict attention to the cases of p = 0 and p = 1.

1.1 0-Forms

What does it mean to integrate something over a 0-dimensional domain, i.e. a point?
Consider some arbitrary space M and a function f : M→ R, i.e. to each point p ∈M

we associate a real number f(p) ∈ R. We can formally define a 0-dimensional integral over
the point p via

∫

p
f = f(p), (1.1)

i.e. integration of a function f over a 0-dimensional domain p is simply evaluation of the
function at the point. The space of all such integrands constitute a vector space since

∫

p
(af + bg) = a

∫

p
f + b

∫

p
g (1.2)

for all a, b ∈ R. When viewed in this way as the space of 0-dimensional integrands, the
space of functions is referred to as the space of 0-forms, i.e. a 0-form is simply a scalar
function viewed as the integrand of a 0-dimensional integral. The space of 0-forms on M
will be denoted Ω0(M), or simply Ω0 if M is understood.

1.2 1-Forms

If the space M above admits domains that may be thought of 1-dimensional oriented
segments or curves, then we can formally define the space C1(M) of all such curves in M.
Now consider a function α : C1(M) → R, i.e. to each curve γ ∈ C1(M) we associate a real
number α(γ) ∈ R. As before, we can write down a formal 1-dimensional integral via

∫

γ
α = α(γ). (1.3)

The space of all such functions is referred to as the space of 1-forms and is denoted Ω1(M).
Admittedly, this may seem like an odd way to view something (integration) that is

already quite familiar, but the point here is to highlight the duality between p-dimensional
domains and p-dimensional functionals on that domain.

1.3 Exterior Derivative

The exterior derivative is a map d : Ω0 → Ω1 satisfying

d(fg) = (df)g + f(dg) (1.4)

and ∫

γ
df =

∫

∂γ
f, (1.5)
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where ∂ : C1 → C0 is the boundary map. For example, if γ ∈ C1 is an oriented curve
beginning at p ∈ C0 and ending at q ∈ C0, then

∂γ = q − p. (1.6)

It follows that ∫

γ
df =

∫

∂γ
f

=
∫

q−p
f

= f(q)− f(p). (1.7)

This is simply a statement of the fundamental theorem of calculus in a slightly more
geometric language.

2. Discrete Calculus

In order to develop robust numerical algorithms, we would like to have discrete versions
of 0-forms, 1-forms, integration, and the exterior derivative available to us. Fortunately,
most of these were provided by Poincare nearly 100 years ago.

2.1 Discrete 0-Forms

In a discrete space, the points are countable, i.e. can be indexed by integers. This is in
contrast to a continuum space where the points are infinite but not countable. We will
label these discrete points by eκ. We can define discrete integration over these points in
precisely the same way as in the continuum, i.e.∫

eκ

f = f(κ), (2.1)

where f(κ) ∈ R is the value of a discrete 0-form f ∈ Ω0 at the node eκ. Due to the
countable nature of the discrete space, this allows us to express the discrete 0-form f as a
summation

f =
∑

λ

f(λ)eλ, (2.2)

where eλ is a basis for discrete 0-forms defined by∫

eκ

eλ = δκ,λ. (2.3)

It may be helpful to see this worked out explicitly. Hence, plugging (2.2) into an integral
over eκ results in ∫

eκ

f =
∑

λ

f(λ)
∫

eκ

eλ

=
∑

λ

f(λ)δκ,λ

= f(κ) (2.4)
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as required.
In addition to simply expressing discrete 0-forms in terms of a basis, this also allows

us to develop the algebra of discrete 0-forms via simple algebraic rules. To multiply two
discrete 0-forms, it suffices to define multiplication of the basis elements. This is given
simply by

eκeλ = δκ,λeκ. (2.5)

With this simple rule, we can explicitly compute

fg =

(∑
κ

f(κ)eκ

)(∑

λ

g(λ)eλ

)

=
∑

κ,λ

f(κ)g(λ)δκ,λeκ

=
∑

κ

f(κ)g(κ)eκ, (2.6)

which is also as expected.

2.2 Discrete 1-Forms

In addition to discrete points eκ, we will have discrete directed edges eκλ extending from
the point eκ to the point eλ. As before, we can define discrete integration via

∫

eκλ

α = αλ(κ), (2.7)

which motivates the introduction of basis 1-forms eµν such that

α =
∑
µν

αν(µ)eµν , (2.8)

where
∫

eκλ

eµν = δκ,µδλ,ν . (2.9)

Now, what is critically distinct about discrete 0- and 1-forms compared to the contin-
uum is that discrete 0-forms and 1-forms do not commute. To see this, again it suffices
to consider the basis elements. The multiplication rules for discrete 0-forms and discrete
1-forms are given by

eκλeµ = δλ,µeκλ (2.10)

and

eµeκλ = δµ,κeκλ. (2.11)
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To help illustrate the simple geometric meaning of this multiplication rule, it helps to
consider an arbitrary discrete 0-form and a single discrete 1-form basis element. In this
case we have,

feκλ =

(∑
µ

f(µ)eµ

)
eκλ

=
∑

µ

f(µ)δµ,κeκλ

= f(κ)eκλ. (2.12)

On the other hand

eκλf = eκλ

(∑
µ

f(µ)eµ

)

=
∑

µ

f(µ)δλ,µeκλ

= f(λ)eκλ. (2.13)

That is, if you multiply a discrete 0-form on the left, it picks out the value of the discrete
0-form at the beginning of the directed edge. If you multiply on the right, it picks out
the value of the discrete 0-form at the end of the directed edge. If you are familiar with
stochastic calculus, this might make you think of the differences in the definitions of the
Stratonovich and Ito integrals. It is no coincidence!

2.3 Discrete Exterior Derivative

The discrete exterior derivative is easy to write down and is given by

deκ =
∑

λ

(
eλκ − eκλ

)
. (2.14)

This may be derived via the fundamental theorem of discrete calculus

∫

eλµ

deκ =
∫

∂eλµ

eκ

=
∫

eµ−eλ

eκ

= δκ,µ − δκ,λ. (2.15)
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Therefore,

deκ =
∑

λµ

(∫

eλµ

deκ

)
eλµ

=
∑

λµ

(δκ,µ − δκ,λ) eλµ

=
∑

λ

eλκ −
∑

µ

eκµ

=
∑

λ

(
eλκ − eκλ

)
. (2.16)

If we were to think of the eκλ as directed edges (technically, they are dual to directed
edges), then this says that the discrete exterior derivative of the node eκ is the sum of
edges directed into eκ minus the sum of the edges directed away from eκ.

Now we can consider the discrete exterior derivative of an arbitrary discrete 0-form

df =
∑

κ

f(κ)deκ

=
∑

κ,λ

f(κ)
(
eλκ − eκλ

)

=
∑

κ,λ

f(κ)eλκ −
∑

κ,λ

f(κ)eκλ

=
∑

κ,λ

f(λ)eκλ −
∑

κ,λ

f(κ)eκλ

=
∑

κ,λ

[f(λ)− f(κ)] eκλ, (2.17)

where in the first term of the fourth line, we simply interchanged the summation variables
κ ↔ λ. This same result could have also been obtain by an application of the fundamental
theorem of discrete calculus.

To check the product rule, we simply compute both sides. First,

d(fg) =
∑

κ,λ

[f(λ)g(λ)− f(κ)g(κ)] eκλ. (2.18)

Second,

(df)g =


∑

κ,λ

[f(λ)− f(κ)] eκλ




(∑
µ

g(µ)eµ

)

=
∑

κ,λ

[f(λ)g(λ)− f(κ)g(λ)] eκλ. (2.19)
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Third,

f(dg) =

(∑
µ

f(µ)eµ

)
∑

κ,λ

[g(λ)− g(κ)] eκλ




=
∑

κ,λ

[f(κ)g(λ)− f(κ)g(κ)] eκλ. (2.20)

Summing the previous two results, we obtain

(df)g + f(dg) =
∑

κ,λ

[f(λ)g(λ)− f(κ)g(κ)] eκλ, (2.21)

thus verifying the product rule

d(fg) = (df)g + f(dg). (2.22)

Note the crucial role the noncommutativity of discrete 0-forms and discrete 1-forms played
in satisfying the product rule. Again, this is no coincidence.

3. The Binary Tree

In the previous Section, we outlined the tools required to develop a discrete calculus. We
saw that the basis of the discrete calculus consisted of a set of nodes eκ and a set of directed
edges eκλ. However, this is the same information needed to define a directed graph, i.e.
we have defined a discrete calculus on an arbitrary directed graph. However, in [?], it was
pointed out that certain graphs have more desirable qualities than others. In particular, it
was shown that if you desire to model an n-dimensional manifold in the continuum limit,
then you must have exactly n edges directed away from each node. A particularly simple
case of this is what we called an n-diamond. For the purposes of this paper, we are only
concerned with 2-diamonds, which happen to correspond to a binary tree. Therefore, in
the remainder of this paper, we will be concerned with directed graphs corresponding to
binary trees.

In a binary tree, it makes sense to use multi-indices to describe the location of points.
For example, a node located at the ith position in the traverse direction and the jth time
step will be denoted by e(i,j). Consequently, an arbitrary discrete 0-form on a binary tree
may be expressed as

φ =
∑

i,j

φ(i, j)e(i,j). (3.1)

Due to the rigid structure of the binary tree, we may express an arbitrary discrete 1-form
via

α =
∑

i,j

α+(i, j)e(i,j)(i+1,j+1)

+
∑

i,j

α−(i, j)e(i,j)(i−1,j+1) (3.2)
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To make contact with the familiar continuum theory, it is helpful to introduce coordi-
nates

t =
∑

i,j

t(i, j)e(i,j) (3.3)

and

x =
∑

i,j

x(i, j)e(i,j), (3.4)

where

∆t = t(i + 1, j + 1)− t(i, j) = t(i− 1, j + 1)− t(i, j) (3.5)

and

∆x = x(i + 1, j + 1)− x(i, j) = − [x(i− 1, j + 1)− x(i, j)] . (3.6)

With this, we can compute the differentials

dt =
∑

i,j

dt(i, j)

=
∑

i,j

∆t
[
e(i,j)(i+1,j+1) + e(i,j)(i−1,j+1)

]
(3.7)

and

dx =
∑

i,j

dx(i, j)

=
∑

i,j

∆x
[
e(i,j)(i+1,j+1) − e(i,j)(i−1,j+1)

]
. (3.8)

Furthermore, with a little algebra we can compute the commutative relations

[dx, x] =
(∆x)2

∆t
dt (3.9)

[dx, t] = [dt, x] = ∆tdx (3.10)

[dt, t] = ∆tdt. (3.11)

4. Discrete Exterior Calculus

In [?], it was demonstrated that if all the commutative relations vanish, we obtain the
exterior calculus of standard differential geometry on smooth manifolds. Now, consider the
commutative relations corresponding to the binary tree above. If we set ∆x = c∆t, we
obtain

[dx, x] = c∆tdt (4.1)

[dx, t] = [dt, x] = ∆tdx (4.2)

[dt, t] = ∆tdt. (4.3)

In the continuum limit ∆t → 0, all the relations vanish. Hence, this binary tree has the
continuum exterior calculus as its continuum limit. This would be of interest if you were
modelling hyperbolic partial differential equations.
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5. Discrete Stochastic Calculus

For the purposes of this paper, the more interesting case is obtained when we set ∆t =
(∆x)2. In this case, the commutative relations reduce to

[dx, x] = dt (5.1)

[dx, t] = [dt, x] = ∆tdx (5.2)

[dt, t] = ∆tdt, (5.3)

which have the continuum limit

[dx, x] = dt (5.4)

[dx, t] = [dt, x] = [dt, t] = 0. (5.5)

In [?], these commutative relations were shown to lead to stochastic calculus. Hence, the
binary tree obtained from setting ∆t = (∆x)2 has the continuum stochastic calculus as a
limit. In this respect, we will refer to the discrete calculus on this special binary tree as
the “discrete stochastic calculus.” In the following, we will examine some consequences of
the discrete version of stochastic calculus.

5.1 Discrete Ito Formula

In Equations (3.7) and (3.8), it was found that

dt(i, j) = ∆t
[
e(i,j)(i+1,j+1) + e(i,j)(i−1,j+1)

]
(5.6)

and

dx(i, j) = ∆x
[
e(i,j)(i+1,j+1) − e(i,j)(i−1,j+1)

]
. (5.7)

These expressions may be inverted giving

e(i,j)(i+1,j+1) =
1

2∆t
dt(i, j) +

1
2∆x

dx(i, j) (5.8)

and

e(i,j)(i−1,j+1) =
1

2∆t
dt(i, j)− 1

2∆x
dx(i, j). (5.9)

The discrete Ito formula arises from a simple application of the discrete exterior deriva-
tive to an arbitrary discrete 0-form

dφ =
∑

i,j

[φ(i + 1, j + 1)− φ(i, j)] e(i,j)(i+1,j+1)

+
∑

i,j

[φ(i− 1, j + 1)− φ(i, j)] e(i,j)(i−1,j+1). (5.10)
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This is quite simple, but it doesn’t look very much like the usual Ito formula. To correct
for this, plug in Equations (5.8) and (5.9) into the above. This results in

dφ =
∑

i,j

[φ(i + 1, j + 1)− φ(i, j)] e(i,j)(i+1,j+1)

+
∑

i,j

[φ(i− 1, j + 1)− φ(i, j)] e(i,j)(i−1,j+1)

=
∑

i,j

[φ(i + 1, j + 1)− φ(i, j)]
[

1
2∆t

dt(i, j) +
1

2∆x
dx(i, j)

]

+
∑

i,j

[φ(i− 1, j + 1)− φ(i, j)]
[

1
2∆t

dt(i, j)− 1
2∆x

dx(i, j)
]

=
∑

i,j

[
φ(i + 1, j + 1)− 2φ(i, j) + φ(i− 1, j + 1)

2∆t

]
dt(i, j)

+
∑

i,j

[
φ(i + 1, j + 1)− φ(i− 1, j + 1)

2∆x

]
dx(i, j). (5.11)

Although the value φ(i, j + 1) does not exist on our binary tee, let us introduce it along
with the following operators:

∂tφ =
∑

i,j

[
φ(i, j + 1)− φ(i, j)

∆t

]
e(i,j), (5.12)

∂xφ =
∑

i,j

[
φ(i + 1, j + 1)− φ(i− 1, j + 1)

2∆x

]
e(i,j), (5.13)

and

∂2
xφ =

∑

i,j

[
φ(i + 1, j + 1)− 2φ(i, j + 1) + φ(i− 1, j + 1)

(∆x)2

]
e(i,j). (5.14)

Keeping in mind that we have ∆t = (∆x)2, it is simple to verify that

∂tφ +
1
2
∂2

xφ =
[
φ(i + 1, j + 1)− 2φ(i, j) + φ(i− 1, j + 1)

2∆t

]
e(i,j). (5.15)

It follows that the Ito formula (5.10) may be expressed in a more familiar form via

dφ =
(

∂tφ +
1
2
∂2

xφ

)
dt + (∂xφ) dx. (5.16)

Why anyone would want to use this form rather than the simple expression in (5.10) beats
me.
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6. Financial Modelling

That was great, but what does it buy us?
Most financial models (that I am aware of anyway) are based on some stochastic

processes. What discrete stochastic calculus allows us to do is to write down any financial
model we like using the continuum version, turn the crank, and out pops a robust numerical
algorithm that is guaranteed to provide solutions that converge to the continuum solutions.
In fact, with some clever programming you could potentially automate this process. For
example, you could enter expressions representing the stochastic process, then the code
automatically generates the correct algorithm and provides a solution.

Discrete stochastic calculus provides a kind of meta algorithm. It is an algorithm for
generating algorithms.

6.1 The Discrete Black-Scholes Model

As a simple application, we will turn the crank on the Black-Scholes model and see what
pops out. The solution may not be such a big surprise, but it demonstrates that the process
works. This provides reason for optimism that it will work for more complicated models
and provides exciting possibilities for future work.

Let V denote the value of an option, B denote the value of a risk-free bond, S denote
the value of a stock, Π denote the value of the portfolio, α denote the holding in the option,
∆ denote the holding in the stock, and β denote the holding in the bond. The outline of
our approach is the following:

1. Compute dV and dB and express in terms of dS and dt.

2. Enforce self-financing so that dΠ = αdV + ∆dS + βdB.

3. Enforce no arbitrage so that Π(i, j) = exp(jr∆t)Π(0, 0).

6.1.1 Change of Variables

The first step in deriving the discrete Black-Scholes equation is to express everything in
terms of the differentials dS and dt instead of dx and dt. To do this, first we compute dS

using the discrete Ito formula (5.10), resulting in

dS =
∑

i,j

dS(ij)

=
∑

i,j

[
∆S+(i, j)e(i,j)(i+1,j+1) + ∆S−(i, j)e(i,j)(i−1,j+1)

]
, (6.1)

where

∆S+(i, j) = S(i + 1, j + 1)− S(i, j) (6.2)

and

∆S−(i, j) = S(i− 1, j + 1)− S(i, j). (6.3)
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This, together with (3.7) results in

e(i,j)(i+1,j+1) =
1

∆S(i, j)

[
dS(i, j)− ∆S−(i, j)

∆t
dt(i, j)

]
(6.4)

and

e(i,j)(i−1,j+1) =
1

∆S(i, j)

[
−dS(i, j) +

∆S+(i, j)
∆t

dt(i, j)
]

, (6.5)

where

∆S(i, j) = S(i + 1, j + 1)− S(i− 1, j + 1). (6.6)

Equations (6.4) and (6.5) allow us to write any differential in terms of dS and dt.
Therefore, we may compute

dV =
∑

i,j

[
∆V +(i, j)e(i,j)(i+1,j+1) + ∆V −(i, j)e(i,j)(i−1,j+1)

]

=
∑

i,j

∆V +(i, j)
∆S(i, j)

[
dS(i, j)− ∆S−(i, j)

∆t
dt(i, j)

]

+
∑

i,j

∆V −(i, j)
∆S(i, j)

[
−dS(i, j) +

∆S+(i, j)
∆t

dt(i, j)
]

=
∑

i,j

[
∆V (i, j)
∆S(i, j)

]
dS(i, j)

+
∑

i,j

[
−∆S−(i, j)

∆S(i, j)
∆V +(i, j)

∆t
+

∆S+(i, j)
∆S(i, j)

∆V −(i, j)
∆t

]
dt(i, j) (6.7)

and

dB =
∑

i,j

∆B(i, j)
∆t

dt(i, j), (6.8)

where

∆B(i, j) = [exp(r∆t)− 1]B(i, j). (6.9)

6.1.2 Self Financing

To ensure that the portfolio is self financing, we must have

dΠ = αdV + ∆dS + βdB

=
∑

i,j

[
α(i, j)

∆V (i, j)
∆S(i, j)

+ ∆(i, j)
]

dS(i, j)

+
∑

i,j

α(i, j)
[
−∆S−(i, j)

∆S(i, j)
∆V +(i, j)

∆t
+

∆S+(i, j)
∆S(i, j)

∆V −(i, j)
∆t

]
dt(i, j)

+
∑

i,j

β(i, j)
∆B(i, j)

∆t
dt(i, j) (6.10)
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6.1.3 No Arbitrage

To ensure that there are no arbitrage opportunities, we must have

Π(i, j) = Π(0, 0) exp(jr∆t). (6.11)

Therefore,

dΠ =
∑

i,j

exp(r∆t)− 1
∆t

[α(i, j)V (i, j) + ∆(i, j)S(i, j) + β(i, j)B(i, j)] dt(i, j)

=
∑

i,j

exp(r∆t)− 1
∆t

[α(i, j)V (i, j) + ∆(i, j)S(i, j)] dt(i, j)

+
∑

i,j

β(i, j)
∆B(i, j)

∆t
dt(i, j) (6.12)

6.1.4 ∆-Hedging

On comparing (6.10) and (6.12), the first thing to note is that (6.12) has no dS(i, j) term.
Therefore, the dS(i, j) term in (6.10) must vanish. This gives the hedging strategy

∆(i, j) = −α(i, j)
∆V (i, j)
∆S(i, j)

. (6.13)

6.1.5 The Discrete Black-Scholes Equation

Substituting (6.13) back into (6.12) gives

dΠ =
∑

i,j

α(i, j)
exp(r∆t)− 1

∆t

[
V (i, j)− ∆V (i, j)

∆S(i, j)
S(i, j)

]
dt(i, j)

+
∑

i,j

β(i, j)
∆B(i, j)

∆t
dt(i, j) (6.14)

Equating (6.14) and (6.10) results in the discrete Black-Scholes equation

0 = −∆S−(i, j)
∆S(i, j)

∆V +(i, j)
∆t

+
∆S+(i, j)
∆S(i, j)

∆V −(i, j)
∆t

− r̃

[
V (i, j)− ∆V (i, j)

∆S(i, j)
S(i, j)

]

=
1

∆t
{q(i, j)V (i + 1, j + 1) + [1− q(i, j)]V (i− 1, j + 1)− [exp(r∆t)]V (i, j)} . (6.15)

where

r̃ =
exp(r∆t)− 1

∆t
. (6.16)

and

q(i, j) =
S(i, j) exp(r∆t)− S(i− 1, j + 1)
S(i + 1, j + 1)− S(i− 1, j + 1)

(6.17)

The discrete Black-Scholes equation may be solved for V (i, j) resulting in

V (i, j) = exp(−r∆t) {q(i, j)V (i + 1, j + 1) + [1− q(i, j)]V (i− 1, j + 1)} . (6.18)

Equation (6.18) is the well-known Cox-Ross-Rubinstein solution for the binomial option
pricing formula. Hence, the Cox-Ross-Rubinstein equation is equivalent to the discrete
Black-Scholes equation.
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7. Conclusion

In the present paper, a review of discrete calculus was given. It was shown that for a
particular choice of parameters, the discrete calculus on a binary tree gives rise to discrete
stochastic calculus. The resulting discrete calculus may be used to construct quite general
financial models. As an illustration, the technique was applied to the well known Black-
Scholes model. It turned out that the discrete Black-Scholes equation is equivalent to the
Cox-Ross-Rubinstein equation, as it should be.

The ideas contained in discrete stochastic calculus open the door to a host of exciting
research possibilities.
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