Phorgy Phynance

Network Theory and Discrete Calculus – Introduction

with 2 comments

I’ve enjoyed applying discrete calculus to various problems since Urs Schreiber and I wrote our paper together back in 2004

Discrete differential geometry on causal graphs

Shortly after that, I wrote an informal paper applying the theory to finance in

Financial modeling using discrete stochastic calculus

From there I wrote up some private notes laying the foundations for applying a higher-dimensional version of discrete calculus to interest rate models. However, life intervened, I went to work on Wall Street followed by various career twists leading me to Hong Kong where I am today. The research has laid fairly dormant since then.

I started picking this up again recently when my friend, John Baez, effectively changed careers and started the Azimuth Project. In particular, I’ve recently developed a discrete Burgers equation with corresponding discrete Cole-Hopf transformation, which is summarized – including numerical simulation results – on the Azimuth Forum here:

Discrete Burgers equation revisited

Motivated by these results, I started looking at a reformulation of the Navier-Stokes equation in

Towards Navier-Stokes from noncommutative geometry

This is still a work-in-progress, but sorting this out is a necessary step to writing down the discrete Navier-Stokes equation.

Even more recently, John began a series of very interesting Azimuth Blog posts on network theory. I knew that network theory and discrete calculus should link up together naturally, but it took a while to see the connection. It finally clicked one night as I laid in bed half asleep in one of those rare “Eureka!” moments. I wrote up the details in

Discrete stochastic mechanics

There is much more to be said about the connection between network theory and discrete calculus. I intend to write a series of subsequent posts in parallel to John’s highlighting how his work with Brendan Fong can be presented in terms of discrete calculus.

Advertisements

Written by Eric

October 28, 2011 at 9:12 am

2 Responses

Subscribe to comments with RSS.

  1. […] stated in the Introduction to this series, one of my goals is to follow along with John Baez’ series and reformulate […]

  2. […] stated in the Introduction, one of the motivations for this series is to work in parallel with John Baez’ series on […]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: